

Epoxidharz Systeme

Plastik-Stahl

WEICON TI

pastös | titaniumgefüllt | temperaturbeständig bis +200 °C (+392 °F) kurzfristig +260 °C (500 °F)

WEICON TI verfügt über hohe Druckbeständigkeiten sowie sehr gute chemische Beständigkeiten. Es eignet sich insbesondere für Reparaturen von Pumpen, Ventilen, Verschleißplatten, Kugellagersitzen, Wellen und Propellern und zum Auskleiden von Pumpengehäusen und Gleitlagern.

Das Epoxidharz-System kann im Maschinen- und Anlagenbau, im Apparatebau sowie in vielen weiteren Bereichen der Industrie zum Einsatz kommen.

Charakteristik		
Basis		Epoxid
Füllstoff		Titan
Konsistenz		pastös
Farbe		grau
Verarbeitung		
Verarbeitungstemperatur		+15 °C bis +40 °C
Bauteiltemperatur		>3 °C über Taupunkt
relative Luftfeuchtigkeit		< 85 %
Mischungsverhältnis nach	Gewicht	100:33
Mischungsverhältnis nach	Volumen	100:35
Viskosität der Mischung	bei +25 °C	550.000 mPa⋅s
Dichte der Mischung		1,6 g/cm ³
Verbrauch	Schichtstärke 1,0 mm	1.6 kg/m²
max. Schichtstärke	je Arbeitsgang	10 mm
Aushärtung		
Topfzeit	bei 20 °C, 500 g Ansatz	120 Min.
Schichtfolgezeit	(35 % der Festigkeit)	7 Std.
Mechanisch belastbar nach	(80 % der Festigkeit)	9 Std.
Endhärte	(100 % der Festigkeit)	16 Std.
Schrumpf		0,09 %

Mechanische Eigenschaften

- ermittelt nach Aushärtung	bei	24 h RT + 14 h 150 °C
Zugfestigkeit	DIN EN ISO 527-2	53 MPa
Bruchdehnung (Zug)	DIN EN ISO 527-2	0,9 %
E-Modul (Zug)	DIN EN ISO 527-2	6200-6800 MPa
Druckfestigkeit	DIN EN ISO 604	66 MPa
Biegefestigkeit	DIN EN ISO 178	10 MPa
Schlagzähigkeit	DIN EN ISO 179-1/1eU	1,7 kJ/m²
Härte (Shore D)	DIN ISO 7619	83±3
Haftfestigkeit	DIN EN ISO 4624	5 MPa
Taber Test	DIN ISO 9352 (H18, 1 kg, 1000 Umdr.)	0,7 g / 0,4 cm ³
Zugscherfestigkeit bei Mate	erialdicke 1,5 mm DIN EN 1465	
Stahl 1.0338 sand	gestrahlt	5 MPa
Edelstahl V2A san	dgestrahlt	3 MPa
Aluminium sandge	estrahlt	3 N/mm²
Feuerverzinkter St	ahl	4 MPa
Thermische Kennwerte		
Temperaturbeständigkeit		-35 °C bis +200 °C, kurzz. bis +260 °C
Tg nach Aushärtung bei RT	(DSC)	~ +52 °C
Tg nach Tempern (150 °C)	(DSC)	+148 °C
Wärmeformbeständigkeit	DIN EN ISO 75-2 (*nach Tempern)	+150* °C
Elektrische Kennwerte		
Durchgangswiderstand	DIN EN 62631-3-1	1,7·10 ¹³ Ω·m
magnetisch		nein
Zulassungen / Richtlinien		
ISSA-Code		75.509.22/23
IMPA-Code		812945/46
MIL-Spec	entspricht	MIL-C-24176

Gebrauchshinweise

Bei der Verarbeitung von WEICON Produkten sind die physikalischen, sicherheitstechnischen, toxikologischen und ökologischen Daten und Vorschriften in unseren EG-Sicherheitsdatenblättern (www.weicon.de) zu beachten.

Oberflächenvorbehandlung

Die erfolgreiche Verarbeitung von WEICON TI hängt von der sorgfältigen Vorbereitung der Oberflächen ab. Denn dies ist der wichtigste Faktor für den Gesamterfolg. Staub, Schmutz, Öl, Schmiere, Rost und Feuchtigkeit oder Nässe haben einen negativen Einfluss auf die Haftung. Vor der Verarbeitung von WEICON TI müssen daher folgende Punkte beachtet werden: Die Klebe- bzw. Ausbesserungsstellen müssen frei von jeglichem Öl, Fett, Schmutz, Rost, Oxiden, Farben und sonstigen Fremdkörpern bzw. Rückständen sein. Zum Reinigen und Entfetten empfehlen wir WEICON Sprühreiniger S. Glatte sowie besonders stark verschmutze Oberflächen sind zusätzlich durch mechanische Oberflächenvorbehandlungen, wie z. B. durch Schleifen oder vorzugsweise durch Strahlen, zu bearbeiten. Bei einer Bearbeitung durch Strahlen, sollte die Oberfläche möglichst auf einen Reinheitsgrad von SA 2 ½ - "Near White Blast Cleaning" (gemäß ISO 8501 /1-2, NACE, SSPC, SIS) gebracht werden. Um einen optimalen Rauheitsgrad der Oberfläche von 75 - 100 µm zur

Hinweis
Alle in diesem Technischen Datenblatt enthaltenen Angaben und Empfehlungen stellen keine zugesicherten Eigenschaften dar. Sie beruhen auf unseren Forschungsergebnissen und Erfahrungen. Sie sind jedoch unverbindlich, da wir für die Einhaltung der Verarbeitungsbedingungen nicht verantwortlich sein können, da uns die speziellen Anwendungsverhältnisse beim Verwender nicht bekannt sind. Eine Gewährleistung kann nur für die stets gleichbleibende hohe Qualität unserer Erzeugnisse übernommen werden. Wir empfehlen, durch ausreichende Eigenversuche festzustellen, ob von dem angegebenen Produkt die von Ihnen gewünschten Eigenschaften erbracht werden. Ein Anspruch daraus ist ausgeschlossen. Für falschen oder zweckfremden Einsatz trägt der Verarbeiter die alleinige Verantwortung.

Epoxidharz Systeme

Plastik-Stahl

WEICON TI

erreichen, sollten kantige Einwegstrahlmittel (Aluminiumoxid, Korund) verwendet werden. Durch die Verwendung von Mehrwegstrahlmittel (Schlacke, Glas, Quarz) aber auch durch Eisstrahlen wird die Oberflächenqualität negativ beeinflusst. Die Luft zum Strahlen muss trocken und ölfrei sein. Metallteile, die mit Meerwasser oder anderen Salzlösungen in Kontakt gekommen sind, sollten zunächst mit VEWasser intensiv gespült und nach Möglichkeit über Nacht ruhen gelassen werden, damit alle Salze aus dem Metall herausgelöst werden können. Vor jeder Anwendung von WEICON TI sollte eine Prüfung auf lösliche Salze nach dem Bresle-Verfahren (DIN EN ISO 8502-6) durchgeführt werden.

Mischen

Zuerst das Harz locker aufrühren. Dann Harz und Härter bei 20 °C (68°F) mindestens vier Minuten gut und blasenfrei miteinander verrühren. Dazu kann der beigefügte Verarbeitungsspatel oder ein mechanischer Mischer, wie zum Beispiel ein Mörtelrührer, verwendet werden. Bei mechanischen Mischern sollte auf eine niedrige Drehzahl von maximal 500 U/Min. geachtet werden. Die Komponenten sollten so lange miteinander verrührt werden, bis eine homogene Mischung erreicht ist. Das Mischungsverhältnis der beiden Komponenten ist genau einzuhalten, da sonst stark abweichende physikalische Werte entstehen (max. Abweichung +/- 2 %). Es ist immer nur so viel anzumischen, wie innerhalb der Topfzeit von 120 Minuten verarbeitet werden kann. Die angegebene Topfzeit bezieht sich auf einen Materialansatz von 500 g und 20°C (68°F) Materialtemperatur. Bei Mischung größerer Mengen oder höheren Verarbeitungstemperaturen erfolgt eine schnellere Aushärtung, bedingt durch die typische Reaktionswärme von Epoxidharzen.

Auftragen

Wir empfehlen für die Verarbeitung Umgebungstemperatur von 20°C (68 °F) bei unter 85 % rel. Luftfeuchte. Mit dem Konturspachtel Flexy WEICON TI für eine dünne Vorbeschichtung intensiv im Kreuzgang in die Oberfläche einarbeiten, um eine maximale Haftung zu erreichen. Mit Hilfe dieser Technik dringt das Epoxidharz gut in alle Ritzen und Rautiefen ein. Im Anschluss kann direkt der weitere Auftrag bis zur gewünschten Schichtstärke erfolgen. Es ist dabei auf einen gleichmäßigen Auftrag ohne Luftblasen zu achten. Um große Lücken oder Löcher auszufüllen. sollten Glasfaser. Streckmetall oder andere mechanische Fixiermaterialien verwendet werden.

Abschließend kann die Oberfläche sehr einfach mit Hilfe einer PE-Folie und einer Gummirolle geglättet werden.

Aushärtung

Die Endhärte ist nach spätestens 16 Stunden bei 20°C (68°F) erreicht. Bei niedrigeren Temperaturen kann die Aushärtung

durch gleichmäßige Wärmezufuhr bis max. 40°C (104°F) mit z. B. Wärmetasche, Heiß- oder Heizlüfter beschleunigt werden.

Höhere Temperaturen verkürzen die Aushärtezeit. Als Faustregel gilt: je +10°C (50°F) Erhöhung über Aushärtezeit. Raumtemperatur (20°C/68°F) verkürzt sich die Aushärtezeit um die Hälfte. Temperaturen unter 16°C (61°F) verlängern die Aushärtezeit, bis ab ca. 5°C (41°F) fast keine Reaktion mehr erfolgt. Um eine dauerhaft hohe Temperaturbeständigkeit zu erhalten, sollte nach 48 Stunden wie nachfolgend beschrieben, getempert werden:

3 h bei +50°C, 2 h bei +90°C, 2 h bei +130°C, abschließend 1 h bei +170°C.

Lagerung

WEICON TI sollte bei Raumtemperatur trocken lagern. Ungeöffnete Gebinde können bei Temperaturen von +18°C bis +28°C mindestens 36 Monate nach Lieferdatum gelagert werden. Geöffnete Gebinde müssen innerhalb von 6 Monaten verbraucht werden.

Lieferumfang

Verarbeitungsspachtel Konturspachtel Flexy Gebrauchsanweisung | Handschuhe | Harz & Härter

Zubehör

10000147	Sprühreiniger S, 500 ml, transparent
10000347	Reiniger S, 5 L, farblos, transparent
10024313	Oberflächenreiniger, 400 ml, transparent
10025288	Oberflächenreiniger, 5 L, transparent
10026647	Formentrennmittel Flüssig F 1000, 250 ml, weiß,
	milchig
10053995	Repair Stick Multi-Purpose, 115 g, altweiß
10000913	Glasfaserband, 1 Stück, weiß
10010887	Verarbeitungsspatel, 1 Stück
10022562	Verarbeitungsspatel, 1 Stück
10016002	Pump-Sprüher WPS 1500, 1 Stück
10039667	Kabelschere No. 35, 1 Stück
10045523	Processing Kit, 1 Stück

Empfohlene Hilfsmittel

Winkelschleifer	Gewebeband
Strahlanlage	Pinsel
Wärmetasche	Schaumstoffrolle
Heiß- oder Heizlüfter	Gummirolle
Glättkelle, Spachtel	Fusselfreie Tücher
PE-Folie 0,2 mm	

Hinweis
Alle in diesem Technischen Datenblatt enthaltenen Angaben und Empfehlungen stellen keine zugesicherten Eigenschaften dar. Sie beruhen auf unseren Forschungsergebnissen und Erfahrungen. Sie sind jedoch unverbindlich, da wir für die Einhaltung der Verarbeitungsbedingungen nicht verantwortlich sein können, da uns die speziellen Anwendungsverhältnisse beim Verwender nicht bekannt sind. Eine Gewährleistung kann nur für die stets gleichbleibende hohe Qualität unserer Erzeugnisse übernommen werden. Wir empfehlen, durch ausreichende Eigenversuche festzustellen, ob von dem angegebenen Produkt die von Ihnen gewünschten Eigenschaften erbracht werden. Ein Anspruch daraus ist ausgeschlossen. Für falschen oder zweckfremden Einsatz trägt der Verarbeiter die alleinige Verantwortung.

Epoxidharz Systeme

Plastik-Stahl

WEICON TI

Umrechnungstabelle

 $(^{\circ}C \times 1,8) + 32 = ^{\circ}F$ mm/25,4 = inch $\mu m/25,4 = mil$ $N \times 0,225 = Ib$ $N/mm^2 x 145 = psi$ $MPa \times 145 = psi$

 $Nm \times 8,851 = Ib \cdot in$ $Nm \times 0.738 = Ib \cdot ft$ $Nm \times 141,62 = oz \cdot in$ mPa·s = cP $N/cm \times 0,571 = Ib/in$ $kV/mm \times 25,4 = V/mil$

Erhältliche Gebindegrößen

10013464 WEICON TI, 0,5 kg, grau 10013475 WEICON TI, 2 kg, grau 10054397 WEICON TI, 200 g, grau

	WEICON A	WEICONB	WEICON BR	WEICON C	WEICON F	WEICON F2	WEICON HB 300	WEICON HT 111	WEICONSF	WEICONST	WEICON TI	WEICON UW	WEICON WR2	WEICON HP	WEICON Fire Safe	WEICON Anti-Static	WEICON Food Grade	WEICON Anti-Haft	WEICON Keramik BL	WEICON GL	WEICON GL-S	WEICON Keramik W	WEICON Keramik HC 220	WEICON WP	WEICON WR	WEICON CBC
Reparatur, Formgebung und Neuaufbau von Metallerosion und -korrosion	х	x	х	x	х	x	x	х	x	x	х	x	х													
Klebstoff				х	х		х	х		х				х	х											
Verschleiß-, Erosions- und Korrosionsschutz - abriebfeste Beschichtung																х	х	х	х	x	х	х	x	x		
Verguss, Unterfütterung und Spaltausgleich - Vergussmassen Gießen und Injizieren	х					х							х												х	x

Hinweis
Alle in diesem Technischen Datenblatt enthaltenen Angaben und Empfehlungen stellen keine zugesicherten Eigenschaften dar. Sie beruhen auf unseren Forschungsergebnissen und Erfahrungen. Sie sind jedoch unverbindlich, da wir für die Einhaltung der Verarbeitungsbedingungen nicht verantwortlich sein können, da uns die speziellen Anwendungsverhältnisse beim Verwender nicht bekannt sind. Eine Gewährleistung kann nur für die stets gleichbielbende hohe Qualität unserer Erzeugnisse übernommen werden. Wir empfehlen, durch ausreichende Eigenversuche festzustellen, ob von dem angegebenen Produkt die von Ihnen gewünschten Eigenschaften erbracht werden. Ein Anspruch daraus ist ausgeschlossen. Für falschen oder zweckfremden Einsatz trägt der Verarbeitert die alleinige Verantwortung.

Epoxidharz Systeme Plastik-Stahl

WEICON TI

Chemische Beständigkeit von WEICON Plastik-Stahl nach der Aushärtung* (Auszug)

Abgase	+	Kaliumcarbonat (Pottaschelösung)	+
Aceton	0	Kaliumhydroxid 0-20 % (Ätzkali)	+
Aethylaether	+	Kalkmilch	+
Aethylalkohol	0	Karbolsäure (Phenol)	-
Aethylbenzol	_	Kreosotöl	_
Alkalien (basische Stoffe)	+	Kresylsäure	-
Kohlenwasserstoffe, aliphatische (Erdölabkömmlinge)	+	Magnesiumhydroxid	+
Ameisensäure >10 % (Methansäure)	-	Maleinsäure (cis-Ethylendicarbonsäure)	+
Ammoniak wasserfrei 25%	+	Methanol (Methylalkohol) <85 %	-
Amylacetat	+	Mineralöle	+
Amylalkohole	+	Naphtalin	-
Kohlenwasserstoffe, aromatische (Benzol, Toluol, Xylol)	+	Naphtene	-
Bariumhydroxid	+	Natriumcarbonat (Soda)	+
Benzine (92-100 Oktan)	+	Natriumbicarbonat (Natriumhydrogencarbonat)	+
Bromwasserstoffsäure <10 %	+	Natriumchlorid (Speisesalz)	+
Butylacetat	+	Natriumhydroxid >20 % (Ätznatron)	0
Butylalkohol	+	Natronlauge	+
Calciumhydroxid (gelöschter Kalk)	+	Heizöl, Diesel	+
Chloressigsäure	-	Oxalsäure <25 % (Ethandisäure)	+
Chloroform ((Trichlormethan)	0	Perchloraethylen	0
Chlorschwefelsäure (nass und trocken)	-	Petroleum	+
Chlorwasser (Schwimmbadkonzentration)	+	Oele, pflanzliche und tierische	+
Chlorwasserstoffsäure 10-20 %	+	Phosphorsäure < 5 %	+
Chromierungsbäder	+	Phthalsäure, Phthalsäureanhydrid	+
Chromsäure	+	Rohöl	+
Dieselkraftstoffe	+	Salpetersäure <5 %	0
Erdöl- und Erdölprodukte	+	Salzsäure <10 %	+
Essigsäure verdünnt <5 %	+	Schwefeldioxid (feucht und trocken)	+
Ethanol <85 % (Ethylalkohol)	+	Schwefelkohlenstoff	+
Fette, Öle und Wachse	+	Schwefelsäure <5 %	0
Fluorwasserstoffsäure verdünnt (Flusssäure)	0	Testbenzin	+
Gerbsäure verdünnt <7 %	+	Tetrachlorkohlenstoff (Tetrachlormethan)	+
Glycerin (Trihydroxipropan)	+	Tetralin (Tetrahydronaphthalin)	0
Glykol	0	Toluol	-
Huminsäure	+	Wasserstoffperoxid <30 % (Wasserstoffsuperoxid)	+
Imprägnieröle	+	Trichloraethylen	0
Kalilauge	+	Xylol (Xylen)	-

^{+ =} beständig 0 = zeitlich begrenzt - = unbeständig *Die Einlagerung aller WEICON Plastik-Stahl erfolgte bei +20°C Chemikalientemperatur.

Hinweis
Alle in diesem Technischen Datenblatt enthaltenen Angaben und Empfehlungen stellen keine zugesicherten Eigenschaften dar. Sie beruhen auf unseren Forschungsergebnissen und Erfahrungen. Sie sind jedoch unverbindlich, da wir für die Einhaltung der Verarbeitungsbedingungen nicht verantwortlich sein können, da uns die speziellen Anwendungsverhältnisse beim Verwender nicht bekannt sind. Eine Gewährleistung kann nur für die stets gleichbielbende hohe Qualität unserer Erzeugnisse übernommen werden. Wir empfehlen, durch ausreichende Eigenversuche festzustellen, ob von dem angegebenen Produkt die von Ihnen gewünschten Eigenschaften erbracht werden. Ein Anspruch daraus ist ausgeschlossen. Für falschen oder zweckfremden Einsatz trägt der Verarbeitert die alleinige Verantwortung.